Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36828472

RESUMO

Snakebite is a globally neglected tropical disease, with coagulation disturbances being the primary pathology of many deadly snake venoms. Age-related differences in human plasma have been abundantly reported, yet the effect that these differences pose regarding snakebite is largely unknown. We tested for differences in coagulotoxic effects (via clotting time) of multiple snake venoms upon healthy human adult (18+) and paediatric (median 3.3 years old) plasma in vivo and compared these effects to the time it takes the plasmas to clot without the addition of venom (the spontaneous clotting time). We tested venoms from 15 medically significant snake species (from 13 genera) from around the world with various mechanisms of coagulotoxic actions, across the three broad categories of procoagulant, pseudo-procoagulant, and anticoagulant, to identify any differences between the two plasmas in their relative pathophysiological vulnerability to snakebite. One procoagulant venom (Daboia russelii, Russell's Viper) produced significantly greater potency on paediatric plasma compared with adult plasma. In contrast, the two anticoagulant venoms (Pseudechis australis, Mulga Snake; and Bitis cornuta, Many-horned Adder) were significantly more potent on adult plasma. All other procoagulant venoms and all pseudo-procoagulant venoms displayed similar potency across both plasmas. Our preliminary results may inform future studies on the effect of snake venoms upon plasmas from different age demographics and hope to reduce the burden of snakebite upon society.


Assuntos
Mordeduras de Serpentes , Animais , Humanos , Adulto , Criança , Pré-Escolar , Mordeduras de Serpentes/patologia , Antivenenos/farmacologia , Coagulação Sanguínea , Venenos de Serpentes/farmacologia , Anticoagulantes/farmacologia , Venenos de Víboras/farmacologia
2.
Toxins, v. 15, n. 2, 158, fev. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4810

RESUMO

Snakebite is a globally neglected tropical disease, with coagulation disturbances being the primary pathology of many deadly snake venoms. Age-related differences in human plasma have been abundantly reported, yet the effect that these differences pose regarding snakebite is largely unknown. We tested for differences in coagulotoxic effects (via clotting time) of multiple snake venoms upon healthy human adult (18+) and paediatric (median 3.3 years old) plasma in vivo and compared these effects to the time it takes the plasmas to clot without the addition of venom (the spontaneous clotting time). We tested venoms from 15 medically significant snake species (from 13 genera) from around the world with various mechanisms of coagulotoxic actions, across the three broad categories of procoagulant, pseudo-procoagulant, and anticoagulant, to identify any differences between the two plasmas in their relative pathophysiological vulnerability to snakebite. One procoagulant venom (Daboia russelii, Russell’s Viper) produced significantly greater potency on paediatric plasma compared with adult plasma. In contrast, the two anticoagulant venoms (Pseudechis australis, Mulga Snake; and Bitis cornuta, Many-horned Adder) were significantly more potent on adult plasma. All other procoagulant venoms and all pseudo-procoagulant venoms displayed similar potency across both plasmas. Our preliminary results may inform future studies on the effect of snake venoms upon plasmas from different age demographics and hope to reduce the burden of snakebite upon society.

3.
Toxicol Lett ; 348: 59-72, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044056

RESUMO

Is snake venom activity influenced by size? This is a long-standing question that can have important consequences for the treatment of snake envenomation. Ontogenetic shifts in venom composition are a well-documented characteristic of numerous snake species. Although snake venoms can cause a range of pathophysiological disturbances, establishing the coagulotoxic profiles related to such shifts is a justified approach because coagulotoxicity can be deadly, and its neutralisation is a challenge for current antivenom therapy. Thus, we aimed to assess the coagulotoxicity patterns on plasma and fibrinogen produced by B othrops jararacussu venoms from individuals of different sizes and sex, and the neutralisation potential of SAB (anti bothropic serum produced by Butantan Institute). The use of a metalloproteinase inhibitor (Prinomastat) and a serine proteinase inhibitor (AEBSF) enabled us to determine the toxin class responsible for the observed coagulopathy: activity on plasma was found to be metalloprotease driven, while the activity on fibrinogen is serine protease driven. To further explore differences in venom activity, the activation of Factor X and prothrombin as a function of snake size was also evaluated. All the venoms exhibited a potent procoagulant effect upon plasma and were less potent in their pseudo-procoagulant clotting effect upon fibrinogen. On human plasma, the venoms from smaller snakes produced more rapid clotting than the larger ones. In contrast, the venom activity on fibrinogen had no relation with size or sex. The difference in procoagulant potency was correlated with the bigger snakes being proportionally better neutralized by antivenom due to the lower levels of procoagulant toxins, than the smaller. Thus, while the antivenom ultimately neutralized the venoms, proportionally more would be needed for an equal mass of venom from a small snake than a large one. Similarly, the neutralisation by SAB of the pseudo-procoagulant clotting effects was also correlated with relative potency, with the smaller and bigger snakes being neutralized proportional to potency, but with no correlation to size. Thromboelastography (TEG) tests on human and toad plasma revealed that small snakes' venoms acted quicker than large snakes' venom on both plasmas, with the action upon amphibian plasma consistent with smaller snakes taking a larger proportion of anuran prey than adults. Altogether, the ontogenetic differences regarding coagulotoxic potency and corresponding impact upon relative antivenom neutralisation of snakes with different sizes were shown, underscoring the medical importance of investigating ontogenetic changes in order to provide data crucial for evidence-based design of clinical management strategies.


Assuntos
Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Venenos de Crotalídeos/toxicidade , Mordeduras de Serpentes/tratamento farmacológico , Animais , Bothrops , Fator X/metabolismo , Feminino , Humanos , Masculino , Tromboelastografia
4.
Artigo em Inglês | MEDLINE | ID: mdl-33766656

RESUMO

What factors influence the evolution of a heavily selected functional trait in a diverse clade? This study adopts rattlesnakes as a model group to investigate the evolutionary history of venom coagulotoxicity in the wider context of phylogenetics, natural history, and biology. Venom-induced clotting of human plasma and fibrinogen was determined and mapped onto the rattlesnake phylogenetic tree to reconstruct the evolution of coagulotoxicity across the group. Our results indicate that venom phenotype is often independent of phylogenetic relationships in rattlesnakes, suggesting the importance of diet and/or other environmental variables in driving venom evolution. Moreover, the striking inter- and intraspecific variability in venom activity on human blood highlights the considerable variability faced by physicians treating envenomation. This study is the most comprehensive effort to date to describe and characterize the evolutionary and biological aspects of coagulotoxins in rattlesnake venom. Further research at finer taxonomic levels is recommended to elucidate patterns of variation within species and lineages.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Venenos de Crotalídeos/toxicidade , Animais , Crotalus , Evolução Molecular , Fibrinogênio/química , Humanos , Especificidade da Espécie
5.
Toxins (Basel) ; 13(2)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540884

RESUMO

Snakes of the genera Pseudocerastes and Eristicophis (Viperidae: Viperinae) are known as the desert vipers due to their association with the arid environments of the Middle East. These species have received limited research attention and little is known about their venom or ecology. In this study, a comprehensive analysis of desert viper venoms was conducted by visualising the venom proteomes via gel electrophoresis and assessing the crude venoms for their cytotoxic, haemotoxic, and neurotoxic properties. Plasmas sourced from human, toad, and chicken were used as models to assess possible prey-linked venom activity. The venoms demonstrated substantial divergence in composition and bioactivity across all experiments. Pseudocerastes urarachnoides venom activated human coagulation factors X and prothrombin and demonstrated potent procoagulant activity in human, toad, and chicken plasmas, in stark contrast to the potent neurotoxic venom of P. fieldi. The venom of E. macmahonii also induced coagulation, though this did not appear to be via the activation of factor X or prothrombin. The coagulant properties of P. fieldi and P. persicus venoms varied among plasmas, demonstrating strong anticoagulant activity in the amphibian and human plasmas but no significant effect in that of bird. This is conjectured to reflect prey-specific toxin activity, though further ecological studies are required to confirm any dietary associations. This study reinforces the notion that phylogenetic relatedness of snakes cannot readily predict venom protein composition or function. The significant venom variation between these species raises serious concerns regarding antivenom paraspecificity. Future assessment of antivenom is crucial.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Comportamento Predatório , Proteínas de Répteis/toxicidade , Mordeduras de Serpentes/metabolismo , Peçonhas/toxicidade , Viperidae/metabolismo , Animais , Anuros , Linhagem Celular Tumoral , Galinhas , Humanos , Masculino , Junção Neuromuscular/fisiopatologia , Proteoma , Proteômica , Proteínas de Répteis/metabolismo , Mordeduras de Serpentes/sangue , Mordeduras de Serpentes/fisiopatologia , Especificidade da Espécie , Peçonhas/metabolismo
6.
Toxicol Lett ; 340: 77-88, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33412251

RESUMO

Species within the viperid genus Macrovipera are some of the most dangerous snakes in the Eurasian region, injecting copious amounts of potent venom. Despite their medical importance, the pathophysiological actions of their venoms have been neglected. Particularly poorly known are the coagulotoxic effects and thus the underlying mechanisms of lethal coagulopathy. In order to fill this knowledge gap, we ascertained the effects of venom upon human plasma for Macrovipera lebetina cernovi, M. l. lebetina, M. l. obtusa, M. l. turanica, and M. schweizeri using diverse coagulation analysing protocols. All five were extremely potent in their ability to promote clotting but varied in their relative activation of Factor X, being equipotent in this study to the venom of the better studied, and lethal, species Daboia russelii. The Insoserp European viper antivenom was shown to be highly effective against all the Macrovipera venoms, but performed poorly against the D. russelii venom. Reciprocally, while Daboia antivenoms performed well against D. russelii venom, they failed against Macrovipera venom. Thus despite the two genera sharing a venom phenotype (Factor X activation) driven by the same toxin type (P-IIId snake venom metalloproteases), the surface biochemistries of the toxins differed significantly enough to impede antivenom cross- neutralization. The differences in venom biochemistry were reflected in coagulation co-factor dependence. While both genera were absolutely dependent upon calcium for the activation of Factor X, dependence upon phospholipid varied. The Macrovipera venoms had low levels of dependence upon phospholipid while the Daboia venom was three times more dependent upon phospholipid for the activation of Factor X. This suggests that the sites on the molecular surface responsible for phospholipid dependence, are the same differential sites that prevent inter-genera antivenom cross- neutralization. Due to cold-chain requirements, antivenoms may not be stocked in rural settings where the need is at the greatest. Thus we tested the efficacy of enzyme inhibitor Prinomastat as a field-deployable treatment to stabilise patients while being transported to antivenom stocks, and showed that it was extremely effective in blocking the Factor X activating pathophysiological actions. Marimastat however was less effective. These results thus not only shed light on the coagulopathic mechanisms of Macrovipera venoms, but also provide data critical for evidence-based design of snakebite management strategies.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Venenos de Víboras/toxicidade , Viperidae/fisiologia , Animais , Antivenenos/farmacologia , Fator X/química , Fator X/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Compostos Orgânicos/farmacologia , Fosfolipídeos/química , Especificidade da Espécie
7.
Toxins (Basel) ; 13(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499001

RESUMO

The toxin composition of snake venoms and, thus, their functional activity, can vary between and within species. Intraspecific venom variation across a species' geographic range is a major concern for antivenom treatment of envenomations, particularly for countries like French Guiana that lack a locally produced antivenom. Bothrops asper and Bothrops atrox are the most medically significant species of snakes in Latin America, both producing a variety of clinical manifestations, including systemic bleeding. These pathophysiological actions are due to the activation by the venom of the blood clotting factors Factor X and prothrombin, thereby causing severe consumptive coagulopathy. Both species are extremely wide-ranging, and previous studies have shown their venoms to exhibit regional venom variation. In this study, we investigate the differential coagulotoxic effects on human plasma of six venoms (four B. asper and two B. atrox samples) from different geographic locations, spanning from Mexico to Peru. We assessed how the venom variation of these venom samples affects neutralisation by five regionally available antivenoms: Antivipmyn, Antivipmyn-Tri, PoliVal-ICP, Bothrofav, and Soro Antibotrópico (SAB). The results revealed both inter- and intraspecific variations in the clotting activity of the venoms. These variations in turn resulted in significant variation in antivenom efficacy against the coagulotoxic effects of these venoms. Due to variations in the venoms used in the antivenom production process, antivenoms differed in their species-specific or geographical neutralisation capacity. Some antivenoms (PoliVal-ICP, Bothrofav, and SAB) showed species-specific patterns of neutralisation, while another antivenom (Antivipmyn) showed geographic-specific patterns of neutralisation. This study adds to current knowledge of Bothrops venoms and also illustrates the importance of considering evolutionary biology when developing antivenoms. Therefore, these results have tangible, real-world implications by aiding evidence-based design of antivenoms for treatment of the envenomed patient. We stress that these in vitro studies must be backed by future in vivo studies and clinical trials before therapeutic guidelines are issued regarding specific antivenom use in a clinical setting.


Assuntos
Anticorpos Neutralizantes/farmacologia , Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Bothrops , Venenos de Crotalídeos/antagonistas & inibidores , Hemorragia/tratamento farmacológico , Mordeduras de Serpentes/tratamento farmacológico , Animais , Especificidade de Anticorpos , Bothrops/imunologia , Bothrops/metabolismo , Reações Cruzadas , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/metabolismo , Hemorragia/sangue , Hemorragia/imunologia , Humanos , Mordeduras de Serpentes/sangue , Mordeduras de Serpentes/imunologia , Especificidade da Espécie
8.
Toxicol Lett, v. 348, p. 59-72, set. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3809

RESUMO

Is snake venom activity influenced by size? This is a long-standing question that can have important consequences for the treatment of snake envenomation. Ontogenetic shifts in venom composition are a well-documented characteristic of numerous snake species. Although snake venoms can cause a range of pathophysiological disturbances, establishing the coagulotoxic profiles related to such shifts is a justified approach because coagulotoxicity can be deadly, and its neutralisation is a challenge for current antivenom therapy. Thus, we aimed to assess the coagulotoxicity patterns on plasma and fibrinogen produced by B. jararacussu venoms from individuals of different sizes and sex, and the neutralisation potential of SAB (anti bothropic serum produced by Butantan Institute). The use of a metalloproteinase inhibitor (Prinomastat) and a serine proteinase inhibitor (AEBSF) enabled us to determine the toxin class responsible for the observed coagulopathy: activity on plasma was found to be metalloprotease driven, while the activity on fibrinogen is serine protease driven. To further explore differences in venom activity, the activation of Factor X and prothrombin by as a function of snake size was also evaluated. All the venoms exhibited a potent procoagulant effect upon plasma and were less potent in their pseudo-procoagulant clotting effect upon fibrinogen. On human plasma, the venoms from smaller snakes produced more rapid clotting than the larger ones. In contrast, the venom activity on fibrinogen had no relation with size or sex. The difference in procoagulant potency was correlated with the bigger snakes being proportionally better neutralized by antivenom due to the lower levels of procoagulant toxins, than the smaller. Thus, while the antivenom ultimately neutralized the venoms, proportionally more would be needed for an equal mass of venom from a small snake than a large one. Similarly, the neutralisation by SAB of the pseudo-procoagulant clotting effects was also correlated with relative potency, with the smaller and bigger snakes being neutralized proportional to potency, but with no correlation to size. Thromboelastography (TEG) tests on human and toad plasma revealed that small snakes’ venoms acted quicker than large snakes’ venom on both plasmas, with the action upon amphibian plasma consistent with smaller snakes taking a larger proportion of anuran prey than adults. Altogether, the ontogenetic differences regarding coagulotoxic potency and corresponding impact upon relative antivenom neutralisation of snakes with different sizes were shown, underscores the medical importance of investigating ontogenetic changes in order to provide data crucial for evidence-based design of clinical management strategies.

9.
Toxicol Lett ; 327: 2-8, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32199952

RESUMO

Does the venom of Trimeresurus albolabris (white-lipped pit viper) differ between neonate and adults? This species is responsible for most snakebites within south and southeast Asia, yet it is unknown whether ontogenetic variation in venom composition occurs in this species, or how this might affect antivenom efficacy. Using a coagulation analyser robot, we examined the anticoagulant activity of T. albolabris venom from eight individuals across multiple age classes. We then compared the efficacy of Thai Red Cross Green Pit Viper Antivenom across these age classes. Venoms from all age classes were equally potent in their pseudo-procoagulant, fibrinogenolytic activity, in that fibrinogen was cleaved to form weak, unstable fibrin clots that rapidly broke down, thus resulting in a net anticoagulant state. Similarly, this coagulotoxic activity was well neutralised by antivenom across all venoms. Given that coagulotoxicity is the primary serious pathology in T. albolabris envenomations, we conclude that Thai Red Cross Green Tree Pit Viper Antivenom is a valid treatment for envenomations by this species, regardless of age or sex of the offending snake. These results are relevant for clinical treatment of envenomations by T. albolabris.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Venenos de Crotalídeos/toxicidade , Mordeduras de Serpentes/terapia , Trimeresurus/fisiologia , Envelhecimento , Animais , Antivenenos , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...